Copied to
clipboard

G = C42.189D6order 192 = 26·3

9th non-split extension by C42 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.189D6, C4⋊C4.212D6, (S3×C42)⋊20C2, D6⋊Q842C2, Dic3⋊D4.3C2, C22⋊C4.78D6, Dic35D441C2, C423S314C2, C422C210S3, D6.13(C4○D4), D6.D440C2, C23.9D650C2, Dic3.Q837C2, (C2×C6).250C24, (C2×C12).95C23, D6⋊C4.45C22, Dic6⋊C441C2, Dic34D435C2, (C4×C12).234C22, C23.66(C22×S3), (C22×C6).64C23, Dic3.15(C4○D4), C23.11D646C2, (C2×D12).168C22, C23.16D621C2, Dic3⋊C4.72C22, C4⋊Dic3.246C22, C22.271(S3×C23), (C22×S3).224C23, (C2×Dic3).313C23, (C4×Dic3).150C22, (C2×Dic6).183C22, C6.D4.66C22, C311(C23.36C23), (C22×Dic3).150C22, C4⋊C47S340C2, C2.97(S3×C4○D4), C6.208(C2×C4○D4), (C3×C422C2)⋊5C2, (S3×C2×C4).300C22, (C2×C4).87(C22×S3), (C3×C4⋊C4).202C22, (C2×C3⋊D4).70C22, (C3×C22⋊C4).75C22, SmallGroup(192,1265)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.189D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C42 — C42.189D6
C3C2×C6 — C42.189D6
C1C22C422C2

Generators and relations for C42.189D6
 G = < a,b,c,d | a4=b4=c6=1, d2=a2, ab=ba, cac-1=dad-1=a-1b2, cbc-1=dbd-1=a2b, dcd-1=a2c-1 >

Subgroups: 560 in 234 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, C23.36C23, S3×C42, C423S3, C23.16D6, Dic34D4, C23.9D6, Dic3⋊D4, C23.11D6, Dic6⋊C4, Dic3.Q8, C4⋊C47S3, Dic35D4, D6.D4, D6⋊Q8, C3×C422C2, C42.189D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, S3×C23, C23.36C23, S3×C4○D4, C42.189D6

Smallest permutation representation of C42.189D6
On 96 points
Generators in S96
(1 64 19 83)(2 68 20 54)(3 66 21 79)(4 70 22 50)(5 62 23 81)(6 72 24 52)(7 53 26 67)(8 84 27 65)(9 49 28 69)(10 80 29 61)(11 51 30 71)(12 82 25 63)(13 38 88 47)(14 55 89 34)(15 40 90 43)(16 57 85 36)(17 42 86 45)(18 59 87 32)(31 78 58 93)(33 74 60 95)(35 76 56 91)(37 94 46 73)(39 96 48 75)(41 92 44 77)
(1 56 7 43)(2 36 8 41)(3 58 9 45)(4 32 10 37)(5 60 11 47)(6 34 12 39)(13 62 95 51)(14 82 96 72)(15 64 91 53)(16 84 92 68)(17 66 93 49)(18 80 94 70)(19 35 26 40)(20 57 27 44)(21 31 28 42)(22 59 29 46)(23 33 30 38)(24 55 25 48)(50 87 61 73)(52 89 63 75)(54 85 65 77)(67 90 83 76)(69 86 79 78)(71 88 81 74)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 78 19 93)(2 92 20 77)(3 76 21 91)(4 96 22 75)(5 74 23 95)(6 94 24 73)(7 86 26 17)(8 16 27 85)(9 90 28 15)(10 14 29 89)(11 88 30 13)(12 18 25 87)(31 67 58 53)(32 52 59 72)(33 71 60 51)(34 50 55 70)(35 69 56 49)(36 54 57 68)(37 63 46 82)(38 81 47 62)(39 61 48 80)(40 79 43 66)(41 65 44 84)(42 83 45 64)

G:=sub<Sym(96)| (1,64,19,83)(2,68,20,54)(3,66,21,79)(4,70,22,50)(5,62,23,81)(6,72,24,52)(7,53,26,67)(8,84,27,65)(9,49,28,69)(10,80,29,61)(11,51,30,71)(12,82,25,63)(13,38,88,47)(14,55,89,34)(15,40,90,43)(16,57,85,36)(17,42,86,45)(18,59,87,32)(31,78,58,93)(33,74,60,95)(35,76,56,91)(37,94,46,73)(39,96,48,75)(41,92,44,77), (1,56,7,43)(2,36,8,41)(3,58,9,45)(4,32,10,37)(5,60,11,47)(6,34,12,39)(13,62,95,51)(14,82,96,72)(15,64,91,53)(16,84,92,68)(17,66,93,49)(18,80,94,70)(19,35,26,40)(20,57,27,44)(21,31,28,42)(22,59,29,46)(23,33,30,38)(24,55,25,48)(50,87,61,73)(52,89,63,75)(54,85,65,77)(67,90,83,76)(69,86,79,78)(71,88,81,74), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,78,19,93)(2,92,20,77)(3,76,21,91)(4,96,22,75)(5,74,23,95)(6,94,24,73)(7,86,26,17)(8,16,27,85)(9,90,28,15)(10,14,29,89)(11,88,30,13)(12,18,25,87)(31,67,58,53)(32,52,59,72)(33,71,60,51)(34,50,55,70)(35,69,56,49)(36,54,57,68)(37,63,46,82)(38,81,47,62)(39,61,48,80)(40,79,43,66)(41,65,44,84)(42,83,45,64)>;

G:=Group( (1,64,19,83)(2,68,20,54)(3,66,21,79)(4,70,22,50)(5,62,23,81)(6,72,24,52)(7,53,26,67)(8,84,27,65)(9,49,28,69)(10,80,29,61)(11,51,30,71)(12,82,25,63)(13,38,88,47)(14,55,89,34)(15,40,90,43)(16,57,85,36)(17,42,86,45)(18,59,87,32)(31,78,58,93)(33,74,60,95)(35,76,56,91)(37,94,46,73)(39,96,48,75)(41,92,44,77), (1,56,7,43)(2,36,8,41)(3,58,9,45)(4,32,10,37)(5,60,11,47)(6,34,12,39)(13,62,95,51)(14,82,96,72)(15,64,91,53)(16,84,92,68)(17,66,93,49)(18,80,94,70)(19,35,26,40)(20,57,27,44)(21,31,28,42)(22,59,29,46)(23,33,30,38)(24,55,25,48)(50,87,61,73)(52,89,63,75)(54,85,65,77)(67,90,83,76)(69,86,79,78)(71,88,81,74), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,78,19,93)(2,92,20,77)(3,76,21,91)(4,96,22,75)(5,74,23,95)(6,94,24,73)(7,86,26,17)(8,16,27,85)(9,90,28,15)(10,14,29,89)(11,88,30,13)(12,18,25,87)(31,67,58,53)(32,52,59,72)(33,71,60,51)(34,50,55,70)(35,69,56,49)(36,54,57,68)(37,63,46,82)(38,81,47,62)(39,61,48,80)(40,79,43,66)(41,65,44,84)(42,83,45,64) );

G=PermutationGroup([[(1,64,19,83),(2,68,20,54),(3,66,21,79),(4,70,22,50),(5,62,23,81),(6,72,24,52),(7,53,26,67),(8,84,27,65),(9,49,28,69),(10,80,29,61),(11,51,30,71),(12,82,25,63),(13,38,88,47),(14,55,89,34),(15,40,90,43),(16,57,85,36),(17,42,86,45),(18,59,87,32),(31,78,58,93),(33,74,60,95),(35,76,56,91),(37,94,46,73),(39,96,48,75),(41,92,44,77)], [(1,56,7,43),(2,36,8,41),(3,58,9,45),(4,32,10,37),(5,60,11,47),(6,34,12,39),(13,62,95,51),(14,82,96,72),(15,64,91,53),(16,84,92,68),(17,66,93,49),(18,80,94,70),(19,35,26,40),(20,57,27,44),(21,31,28,42),(22,59,29,46),(23,33,30,38),(24,55,25,48),(50,87,61,73),(52,89,63,75),(54,85,65,77),(67,90,83,76),(69,86,79,78),(71,88,81,74)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,78,19,93),(2,92,20,77),(3,76,21,91),(4,96,22,75),(5,74,23,95),(6,94,24,73),(7,86,26,17),(8,16,27,85),(9,90,28,15),(10,14,29,89),(11,88,30,13),(12,18,25,87),(31,67,58,53),(32,52,59,72),(33,71,60,51),(34,50,55,70),(35,69,56,49),(36,54,57,68),(37,63,46,82),(38,81,47,62),(39,61,48,80),(40,79,43,66),(41,65,44,84),(42,83,45,64)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T6A6B6C6D12A···12F12G12H12I
order1222222234···444444444444444666612···12121212
size11114661222···23333444666612121222284···4888

42 irreducible representations

dim1111111111111112222224
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4○D4C4○D4S3×C4○D4
kernelC42.189D6S3×C42C423S3C23.16D6Dic34D4C23.9D6Dic3⋊D4C23.11D6Dic6⋊C4Dic3.Q8C4⋊C47S3Dic35D4D6.D4D6⋊Q8C3×C422C2C422C2C42C22⋊C4C4⋊C4Dic3D6C2
# reps1111211111111111133846

Matrix representation of C42.189D6 in GL6(𝔽13)

1200000
0120000
005000
000500
00001211
000011
,
100000
010000
000100
0012000
0000510
000088
,
0120000
1120000
001000
0001200
000012
0000012
,
1210000
010000
000500
005000
000080
000055

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,1,0,0,0,0,11,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,5,8,0,0,0,0,10,8],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,2,12],[12,0,0,0,0,0,1,1,0,0,0,0,0,0,0,5,0,0,0,0,5,0,0,0,0,0,0,0,8,5,0,0,0,0,0,5] >;

C42.189D6 in GAP, Magma, Sage, TeX

C_4^2._{189}D_6
% in TeX

G:=Group("C4^2.189D6");
// GroupNames label

G:=SmallGroup(192,1265);
// by ID

G=gap.SmallGroup(192,1265);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,100,1123,794,297,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽